Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.

نویسندگان

  • Joseph E Beshay
  • Paulette Hahn
  • Victor E Beshay
  • Pal T Hargittai
  • Edward M Lieberman
چکیده

An evaluation of electron micrographs of stimulated nerve fibers used to investigate the effect of action potential generation on the structure-function relationship between axons and its associated glial cells revealed that what was at first thought to be stimulation-induced damage to the glia was, in fact, limited to volume expansion and disaggregation of the glial tubular lattice. All other structures appeared well preserved and otherwise normal. Using a 4-point subjective scale for evaluation by two investigators, 50-Hz stimulation for 2 min was observed to cause a volume expansion and disaggregation of the tubular lattice. Quantitatively, the internal diameter of the stimulated tubular lattice increased 65% above the unstimulated control (50.96 +/- 2.09 nm and 30.81 +/- 0.87 nm, respectively, P < or = 0.001). Stimulation had its greatest effect on tubular lattice volume and organization in the adaxonal glial layer and a decreasing effect as distance from the giant axon increased. These effects are reversible since the tubular lattice diameter and degree of disaggregation preserved 10 min after the cessation of stimulation were not found to be different from their unstimulated paired controls. Axons injected with TEA, a voltage-gated potassium channel blocker, prevented stimulation-induced volume expansion and disaggregation of tubular lattice structure. These results are consistent with an active uptake of K+ with obligated water or, alternatively, hyperosmotic K+ uptake and a fixation-induced increase in water permeation. Either mechanism of K+ uptake would result in tubular lattice volume expansion and disaggregation and suggests that the tubular lattice serves a larger role than a simple trans-glial diffusion pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0306-4522(00)00054-3

In crayfish and squid giant nerve fibers, glutamate appears to be an axon–glia signaling agent. We have investigated glutamate transport and metabolism by crayfish central nerve fibers in order to identify possible mechanisms by which glutamate could subserve this non-synaptic signaling function. Accumulation of radiolabeled l-glutamate by desheathed cephalothoracic nerve bundles was temperatur...

متن کامل

Synthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling.

Early physiological and pharmacological studies of crayfish and squid giant nerve fibers suggested that glutamate released from the axon during action potential generation initiates metabolic and electrical responses of periaxonal glia. However, more recent investigations in our laboratories suggest that N-acetylaspartylglutamate (NAAG) may be the released agent active at the glial cell membran...

متن کامل

The periaxonal space of crayfish giant axons

The influence of the glial cell layer on effective external ion concentrations has been studied in crayfish giant axons. Excess K ions accumulate in the periaxonal space during outward K+ current flow, but at a rate far below that expected from the total ionic flux and the measured thickness of the space. At the conclusion of outward current flow, the external K+ concentration returns to normal...

متن کامل

Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber.

CRAYFISH ARE SOUGHT as food by fish, birds, amphibia, and mammals, as well as man (54, p. 460). They commonly escape these predators by darting backward and away from an enemy on contact, or as the predator approaches. This maneuver is accomplished by a sudden flexion of the tail, exerting a thrust backward and sometimes upward against the aquatic medium. A single tail flexion, commonly called ...

متن کامل

Effect of white spot syndrome virus on the activity of immune-related enzymes in the red claw crayfish (Cherax quadricarinatus)

In this study, we explored the pathogenic effects of white spot syndrome virus (WSSV) and effects of yeast cell wall in the red claw crayfish, Cherax quadricarinatus, by investigating the activity of enzymes related to innate immune function following artificial infection of immunized and non-immunized crayfish. Our results reveal that the activity of four enzymes, phenoloxidase (PO), peroxidas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2005